TEORIAS E FILOSOFIAS DE GRACELI 170

 


segunda-feira, 25 de março de 2019


ε = W'/W
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



Emissividade de um material, propriedade representada pela letra e ou ε, diz respeito a capacidade de emissão de energia por radiação da sua superfície. Possuem a capacidade de emitir energia eletromagnética todos os corpos a temperatura superior a zero Kelvin. Essa taxa de emissão é calculada através da razão entre a energia irradiada por um determinado material e a energia irradiada por um corpo negro para um mesmo comprimento de onda (ε=1). Qualquer objeto que não seja um verdadeiro corpo negro tem emissividade menor que 1 e superior a zero.
0 < ε ≤ 1
Quanto maior o valor de ε, mais próxima a emissividade do material é da do corpo negro, ou seja, maior a sua capacidade de emissão de energia. O físico Gustav Kirchhoffcomprovou, em 1860, que a capacidade de um corpo absorver energia é igual à de emití-la. Se uma superfície está recebendo radiação, ela absorve também com igual coeficiente de emissividade. Sendo assim, podemos ainda chamar essa propriedade de absorvidade. Ou seja, aquele material que irradia energia também absorve radiação com o mesmo comprimento de onda. [1]
ε = W'/W
ε: emissividade
W': quantidade de energia emitida pelo corpo (λ constante)
W: quantidade de energia emitida pelo corpo negro (λ constante)
Kirchhoff também propôs teoricamente o conceito de corpo negro, um material que absorvesse toda a energia incidente sobre ele. Em decorrência disso, ele seria o emissor ideal.
Diferentemente dos corpos negros, os corpos reais não absorvem toda a energia eletromagnética incidente sobre eles. Um corpo qualquer pode absorver ou emitir uma parcela (α) da radiação incidente sobre ele, pode refletir uma parcela (δ) e/ou pode transmitir uma parcela (τ). A soma das três parcelas equivale à energia total que incidiu sobre ele.
α + δ + τ = 1
A emissividade de um material está relacionada à sua superfície e ao seu acabamento; varia de acordo com a temperatura em que o objeto se encontra e com o comprimento de onda da radiação emitida.
Corpos com emissividade constante e menor que 1 são denominados corpos cinza. A determinação de sua emissividade não depende do comprimento de onda. A emissividade dos corpos reais, no entanto, varia com o comprimento de onda.

Temperatura e emissividade

A emissividade de um material varia, entre outros fatores, em decorrência da temperatura. A baixas temperaturas, entre 250K e 350K, alguns corpos não metálicos podem apresentar comportamento semelhante ao dos corpos negros, com emissividades próximas de 0,8. As superfícies metálicas, no entanto, apresentam emissividades relativamente baixas nesse intervalo de temperaturas. Ainda nessas condições, podemos observar que a emissividade do solo para o ar é de aproximadamente 0,35, ao passo que a da neve é de 0,95. [2]

A emissividade do céu[editar | editar código-fonte]

A temperatura ambiente, nota-se que o céu diurno possui ε muito próximo de 1 no horizonte, comportando-se de maneira similar a um corpo negro nessa região. No zênite, sua a emissividade é um valor mais baixo. A média da emissividade do céu é de 0,7; entretanto, em locais de grande altitude ou pouca humidade, o vapor d'água e o dióxido de carbono fazem com que a absorção seja menor, diminuindo, consequentemente, a emissividade.
Vistas de baixo, as nuvens se aproximam de como corpos negros, a temperatura de 1K abaixo da temperatura ambiente.
O céu noturno é considerado um corpo negro, cuja temperatura de maior eficácia é 190K.

Emissividades usuais de alguns materiais[3][editar | editar código-fonte]

MaterialEmissividade (ε)
Aço inoxidável – típico, polido 0,17 
Alumínio – altamente polido, película 0,04 
Água 0,96 
Areia 0,90 
Concreto 0,88 – 0,93 
Janela de vidro 0,90 – 0,95 
Materiais de construção – placas de amianto 0,93 – 0,96 
Materiais de construção – tijolo, vermelho 0,93 – 0,96 
Materiais de construção – estuque ou placa de gesso 0,90 – 0,92 
Materiais de construção - madeira 0,82 – 0,92 
Papel, branco 0,92 – 0,97 
Pavimentação de asfalto 0,85 – 0,93 
Rochas 0,88 – 0,95 
Solo 0,93 – 0,96 
Tecido 0,75 – 0,90 
Tintas – pretas 0,98 
Tintas – branca acrílica 0,90 
Tintas – branca óxido de zinco 0,92 
Vegetação0,92 – 0,96 
Cobre polido0,01
Vidro0,92
Ferro polido0,23
Tinta a óleo0,94
Valores de emissividade medidos a 300K (27°C). [4]












princípio da exclusão de energias de Graceli.

duas energias não podem ocupar o mesmo estado quântico ao mesmo tempo.



princípio da incerteza de Graceli.

quando se conhece num tempo uma energia, não é possível conhecer outra energia ao mesmo tempo e no mesmo lugar e intensidade.








teoria da relatividade categorial Graceli

ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D











NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.


E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



Sobre padrões de entropia.

Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


Princípio tempo instabilidade de Graceli.

Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


as dimensões categorias podem ser divididas em cinco formas diversificadas.

tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



paradox of the system of ten dimensions and categories of Graceli.



a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



that is, categories ground the variables of phenomena and their interactions and transformations.



and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



as well as transitions of energies, phenomena, categories and dimensions.

paradoxo do sistema de dez dimensões e categorias de Graceli.

um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

como também transições de energias, fenômenos, categorias e dimensões.







 = entropia reversível

postulado categorial e decadimensional Graceli.

TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
matriz categorial Graceli.

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

quarta-feira, 27 de março de 2019



x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D




x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Uma função de estado é uma função que descreve uma relação entre duas ou mais variáveis de estado que definem o estado de um sistema termodinâmico. Designa também qualquer variável de estado assumida dependente daquelas escolhidas para definirem-se os estados do sistema e por tal tratadas como independentes.

Definição[editar | editar código-fonte]

Em termodinâmica, as variáveis de estado ou variáveis termodinâmicas são as grandezas físicas termodinâmicas utilizadas na definição e descrição do estado de um sistema termodinâmico.
Algumas das variáveis de estado, comuns a todos os sistemas termodinâmicos massivos, incluso os mais simples, são:
massa (m) ; quantidade de matéria (n) ; Pressão (P) ; Temperatura (T) ; Volume (V) ; Energia interna (U) e Entropia (S).
Há ainda outras, não menos importantes, tais como:
Um estado de um sistema é descrito por um conjunto específicos de valores de suas variáveis de estado. A definição de "estado" do sistema - e mesmo das variáveis de estado - assume em princípio o sistema em equilíbrio termodinâmico.
Um dado sistema termodinâmico altera o seu estado de equilíbrio em virtude de alterações nas interações que estabelece com a sua fronteira ou mesmo vizinhança. Ao fazê-lo, o processo desencadeado pode dar-se e usualmente se dá de forma abrupta o suficiente para que não se possa definir estado de equilíbrio durante a transição entre os assumidos estados de equilíbrio inicial e final. Poucos são os casos onde os processos - então nomeados processos quasi-estáticos - dão-se de forma adequada o suficiente para que se possa corretamente descrevê-los via uma sequência de incontáveis transições diferenciais entre estados de equilíbrio imediatamente adjacentes, ou seja, entre estados quasi-idênticos, de forma que o sistema possa sempre ser assumido estar em equilíbrio termodinâmico em qualquer instante durante a transição.
O conjunto de valores das variáveis de estado define o estado do sistema apenas quando esse encontra-se no equilíbrio termodinâmico, e tais variáveis não podem - ao menos sem considerações muito específicas - ser usadas para descrever a evolução temporal do sistema na grande maioria dos processos termodinâmicos onde, durante a transição de um estado de equilíbrio a outro, o sistema não está em equilíbrio (muitas das variáveis de estado não são sequer definidas em tal situação). Tal descrição é corretamente possível apenas nos processos quasi-estáticos.
Independente da forma como se dá o processo que culmina por levar o sistema de um dado estado a outro qualquer, uma vez comparados os valores das variáveis de estado nos diversos estados de equilíbrio possíveis para o sistema (usualmente mas não necessariamente um sistema fechado), verifica-se contudo que, em qualquer estado, há vínculos e restrições de natureza física conectando os diversos valores possíveis das variáveis de estado. Igualmente satisfeitos em qualquer estado do sistema, são tais vínculos que, nos processos termodinâmicos, não permitem que os valores das variáveis de estado se alterem de forma indiscriminada ou mesmo de forma completamente independente das demais, mesmo que o processo entre os estados seja em essência um processo caótico e de não equilíbrio.
As relações de dependência entre as variáveis - as funções de estado, traduzidas matematicamente na forma de equações de estado - são relações que conectam os possíveis valores de um dado subconjunto de variáveis de estado de um sistema. Dá-se também o nome de "função de estado" às variáveis de estado que são assumidas dependentes de outras - geralmente daquelas escolhidas para definir-se o estado. Assim, a energia interna U de um gás ideal é dita ser uma "função de estado; sendo as variáveis independentes - as que definem o estado no estudo de tais gases - usualmente escolhidas como sendo a temperatura T, a pressão P e o volume V do gás.
É nesses termos e com base no antes exposto que se diz: variação de uma função de estado depende apenas do estado final e do estado inicial do sistema.
Uma função de estado estabelece relações entre um determinado número de variáveis de estado, mas não necessariamente entre todas simultaneamente, havendo assim várias equações de estado possíveis para um sistema. Uma função de estado usualmente não encerra em si todas as propriedades físicas do sistema, e não é assim capaz, ao menos sozinha, de descrevê-lo completamente. Precisa-se usualmente de um conjunto mínimo de equações de estado independentes para fazê-lo.
É possível contudo escrever-se uma única equação - nomeada equação fundamental - que encerra em si todas as propriedades físicas do sistema. Essa equação descreve, sozinha, todo o sistema, e dela é possível extrair-se todas as equações de estado desejadas. Para fazê-lo basta utilizar o formalismo termodinâmico associado.

Exemplo - Gás monoatômico ideal[editar | editar código-fonte]

Considere um sistema definido por uma certa massa de gás ideal monoatômico. A análise de tal sistema revela que, para ele, há as seguintes equações de estado:
 (relação de Clapeyron)
Nas expressões anteriores, n representa a quantidade de matéria do sistema, em mols, e R é a constante dos gases ideais.
As partículas de um gás monoatômico só possuem movimentos de translação e, como se trata de um gás ideal, não interagem entre si. Assim, classicamente, a energia interna deste gás é dependente apenas da energia cinética das partículas, energia que por sua vez liga-se diretamente ao conceito de temperatura do sistema. Logo, nesse caso, a energia interna é função exclusiva da temperatura. Basta saber-se a temperatura de uma amostra de gás ideal em equilíbrio termodinâmico que pode-se, então, determinar sua energia interna.
A relação para a energia interna do gás em função da temperatura acima define uma função de estado. Observe que a energia interna depende da temperatura contudo independe de como o sistema chegou à essa temperatura. Qualquer que seja o processo a qual se submeta o sistema, provido que esse regresse à mesma inicial temperatura T, ter-se-á uma variação nula de sua energia interna.[1]
Observe contudo que pode-se combinar as duas equações acima para se gerar outra equação de estado, uma que envolva a energia interna, a pressão e o volume:
Para um mesmo valor de temperatura e por conseguinte para uma mesma energia interna, há diversos estados possíveis do sistema, cada qual com uma pressão e um volume diferentes.
Embora possam-se cogitar outras equações de estado, nenhuma delas, sozinha, encerram em si todas as informações físicas acerca do sistema.
Ao contrário, uma equação que vincule a energia interna U do gás ideal à sua entropia S, ao seu número de partículas N e ao seu volume V encerrará em si própria todas as informações físicas pertinentes ao sistema assim definido, e constitui assim uma equação fundamental de tal sistema. A título de curiosidade, a equação fundamental para um sistema composto por N partículas de um gás ideal confinados em um volume V e com energia interna U é, na representação da energia, com  representando a constante de Boltzmann e c uma constante adequadamente escolhida:

 [2]
Através da transformada de Legendre é possível reescrever-se à equação acima, obtendo-se assim várias outras equações fundamentais, cada qual encerrando sozinha todas as informações físicas acerca do sistema em consideração.















princípio da exclusão de energias de Graceli.

duas energias não podem ocupar o mesmo estado quântico ao mesmo tempo.



princípio da incerteza de Graceli.

quando se conhece num tempo uma energia, não é possível conhecer outra energia ao mesmo tempo e no mesmo lugar e intensidade.








teoria da relatividade categorial Graceli

ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D











NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.


E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



Sobre padrões de entropia.

Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


Princípio tempo instabilidade de Graceli.

Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


as dimensões categorias podem ser divididas em cinco formas diversificadas.

tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



paradox of the system of ten dimensions and categories of Graceli.



a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



that is, categories ground the variables of phenomena and their interactions and transformations.



and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



as well as transitions of energies, phenomena, categories and dimensions.

paradoxo do sistema de dez dimensões e categorias de Graceli.

um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

como também transições de energias, fenômenos, categorias e dimensões.







 = entropia reversível

postulado categorial e decadimensional Graceli.

TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
matriz categorial Graceli.

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

sábado, 23 de março de 2019








x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D




dilatação volumétrica é um tipo de dilatação térmica, nela considera-se o volume, ou seja essa dilatação ocorre nas três dimensões de um sólido (largura, comprimento e altura), ela é ocasionada pelo aquecimento da substância. Embora exista as divisões de dilatação térmica em linear, superficial e volumétrica, toda dilatação que existe na prática é necessariamente volumétrica.
A dilatação volumétrica pode ser calculada pela fórmula[1]:
onde:
dV: variação do volume;
V0: volume inicial;
γ : coeficiente de dilatação volumétrica
dT: variação de temperatura;

Os sólidos têm forma própria e volume definido, mas os líquidos têm somente volume definido. Assim o estudo da dilatação térmica dos líquidos é feita somente em relação à dilatação volumétrica. Esta obedece a uma lei idêntica à dilatação volumétrica de um sólido, ou seja, a dilatação volumétrica de um líquido poderá ser calculada pelas mesmas fórmulas da dilatação volumétrica dos sólidos.

Coeficiente de dilatação volumétrico[editar | editar código-fonte]

Cada substância tem um coeficiente de dilatação próprio, esse pode variar ligeiramente com a temperatura, porém, na maioria dos casos, pode ser considerado constante. Podemos relacionar o coeficiente de dilatação linear e de dilatação volumétrica pela equação:
Veja na tabela abaixo, o coeficiente de dilatação de alguns líquidos, medido em 1/°C (ou 1/K)
SubstânciaCoeficiente de Dilatação Volumétrico
Água1,3 . 10-4
Mercúrio1,8 . 10-4
Glicerina4,9 . 10-4
Benzeno10,6 . 10-4
Álcool11,2 . 10-4
Acetona14,9 . 10-4
Petróleo10 . 10-4

Dilatação da água[editar | editar código-fonte]

Gráfico demonstrando o comportamento anômalo da água, quanto às suas propriedades de dilatação volumétrica
Em regra geral, ao se elevar a temperatura de uma substância, verifica-se uma dilatação térmica. Entretanto, a água, ao ser aquecida de 0°C a 4°C, contrai-se, constituindo-se uma exceção ao caso geral. Esse fenômeno pode ser aplicado da seguinte maneira:
No estado sólido, os átomos de oxigênio, que são muito eletronegativos, unem-se aos átomos de hidrogênio através da ligação denominada ponte de hidrogênio. Em consequência disso, entre as moléculas, formam-se grandes vazios, aumentando o volume externo (aspecto macroscópico).
Quando a água é aquecida de 0°C a 4°C, as ponte de hidrogênio rompem-se e as moléculas passam a ocupar os vazios existentes, provocando, assim, uma contração. Portanto, no intervalo de 0°C a 4°C, ocorre, excepcionalmente, uma diminuição de volume.
Por causa desse comportamento anômalo da água, [2]os lagos congelam de cima para baixo. Quando a água é resfriada entre 0 e 4°C, ela fica menos densa que a água que está abaixo dela, isso faz com que ela permaneça na superfície até se solidificar. Se isso não ocorresse, o gelo formado durante o inverno não derreteria totalmente durante o verão, pois uma camada de água o isolaria. Depois de algum tempo, alguns lagos ficariam congelados o ano inteiro, tornando a vida aquática impossível[1].









x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


,
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



Na análise de transferência de calordifusividade térmica é a condutividade térmica dividida por densidade e capacidade específica de calor a pressão constante.[1] Mede a taxa de transferência de calor de um material do lado quente para o lado frio. Ele tem a unidade derivada SI de m² / s. A difusividade térmica é geralmente denotada & alpha; mas a& kappa;,[2] K,[3] e D também são usados. A fórmula is:
[4]
onde
Juntos,  podem ser considerados a capacidade de calor volumétrico (J/(m³·K)).
Como visto na equação do calor,[5]
,
uma maneira de visualizar a difusividade térmica é como a razão entre tempo derivado de temperatura e sua curvatura, quantificando a taxa na qual a concavidade da temperatura é "suavizada Fora". Em certo sentido, a difusividade térmica é a medida da inércia térmica.[6] In a substance with high thermal diffusivity, heat moves rapidly through it because the substance conducts heat quickly relative to its volumetric heat capacity or 'thermal bulk'.










princípio da exclusão de energias de Graceli.

duas energias não podem ocupar o mesmo estado quântico ao mesmo tempo.



princípio da incerteza de Graceli.

quando se conhece num tempo uma energia, não é possível conhecer outra energia ao mesmo tempo e no mesmo lugar e intensidade.








teoria da relatividade categorial Graceli

ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D











NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.


E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



Sobre padrões de entropia.

Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


Princípio tempo instabilidade de Graceli.

Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


as dimensões categorias podem ser divididas em cinco formas diversificadas.

tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



paradox of the system of ten dimensions and categories of Graceli.



a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



that is, categories ground the variables of phenomena and their interactions and transformations.



and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



as well as transitions of energies, phenomena, categories and dimensions.

paradoxo do sistema de dez dimensões e categorias de Graceli.

um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

como também transições de energias, fenômenos, categorias e dimensões.







 = entropia reversível

postulado categorial e decadimensional Graceli.

TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
matriz categorial Graceli.

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

Comentários